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Classification of birds and bats that use areas targeted for offshore wind farm development is essential to
evaluating the potential effects of development. The current approach to assessing the number and distribution
of birds at sea is transect-surveys conducted by trained individuals in boats or planes, or analysis of imagery
collected from aerial surveys. These methods can be costly and pose safety concerns so that observation times
are limited to daylight hours and fair weather. We propose an alternative method based on analysis of thermal
video that could be recorded autonomously. We present a framework for building models to classify birds
and bats and their associated behaviors from their flight tracks. As an example, we developed a discriminant
model for theoretical flight paths and applied it to data (N = 64 tracks) extracted from 5-minute video clips.
The agreement between model- and observer-classified path types was initially only 41%, but it increased to
73% when small-scale jitter was censored and the number of different path types was reduced. Classification of
46 tracks of bats, swallows, gulls, and terns on average was 82% accurate, based on a jackknife cross-validation.
Model classification of gulls and swallows (N ≥ 18) was on average 73% and 85% correct, respectively. Model
classification of bats and terns (N = 4 and 2, respectively) was 94% and 91% correct, respectively; however,
the variance associatedwith the tracks from these targets is poorly estimated. Themodels developed here should
be considered preliminary because they are based on a small data set both in terms of the numbers of species and
the identified flight tracks. Future classification models could be improved if the distance between the camera
and the target was known.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The development of renewable energy sources, including wind, has
become part of the future U.S. energy portfolio in an effort to reduce
the dependence and the environmental impacts associated with
extracting, transporting, and burning fossil fuels. In order to build and
operate a wind farm, developers must abide by Federal and State
conservation laws including the National Environmental Policy Act,
Migratory Bird Treaty Act, and the Endangered Species Act. Each law
has its own unique requirements, so the U.S. Fish and Wildlife Service
(USFWS) provided guidelines to ease the process for developers of
land-based wind energy (USFWS, 2012). These guidelines rely upon
pre- and post-construction surveys using field personnel to determine
the presence and abundance of birds in order to model and validate
the risk to birds. As the annual production of electricity from land-
based wind farms has grown, so has the interest in development of
production-scale offshore wind energy. However, empirical data
describing the distribution, abundance, behavior, and life history is
nan), Shari.Matzner@pnnl.gov
).
lacking for many bird species. Further, land-based methods to gather
these data are either impossible or prohibitively expensive offshore.

European offshore wind energy development precedes the U.S. and
already includes 69 wind farms in eleven countries (EWEA, 2014).
Methods used to assess risk and effects to bird populations at multiple
scales during pre- and post-construction included direct observation
or video surveys along boat and aerial transects (Banks et al., 2005;
Camphuysen et al., 2004), collision risk models (Band, 2012; Smales
et al., 2013), and field experiments to assess turbine avoidance
(Guillemette and Larsen, 2002). As research efforts in Europe have
gained a greater understanding of effects from wind farms, the need
for additional tools and techniques to appropriately assess impacts has
become apparent (Bailey et al., 2014). Efforts have been initiated to
gather broad-scale wildlife distribution and abundance information off
the Atlantic and Pacific coasts of the U.S. to assess potential offshore
wind-wildlife conflicts and to aid in the leasing of offshore sites for
wind energy development (Adams et al., 2014; Maclean et al., 2009;
Normandeau, 2012; USGS, 2014). Research projects are also being
conducted to gather empirical data necessary to model risk to birds
from collision mortality with wind turbines operating offshore (BOEM,
2014). The limitations of using field personnel for offshore surveys
will likely result in an increased use of remote sensing technologies to
gather the data necessary to validate these risk models.
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Although remote-sensing tools are already used to characterize
offshore wildlife populations, expenses related to data interpretation
are still very high and automated detection and classification methods
are not yet well developed. For instance, Normandeau (2012) used
automated detection algorithms on high spatial resolution imagery
gathered for broad-scale assessment to screen out image frames
without targets of interest and manually-reviewed the remaining im-
ages to glean data. Although Buckland et al. (2012) did not include
cost as a factor in comparing digital and visual aerial survey methods,
the authors did note that locating and identifying birds in images
could be automated from digital survey imagery. Similarly Groom
et al. (2013) used large format digital aerial cameras to record aerial
surveys for marine birds. Image processing was used to extract regions
within images that contained bird-like objects, and these data were
then examined by trained ornithologists. Because of the intense effort
involved in manual data review, an automated animal-detection
algorithm that is both cost-effective and scientifically valid was deemed
essential for offshore risk assessment (Normandeau, 2012).

Radar has been used to survey wildlife both day and night for site
scale assessments of wind farm collision risk and avoidance behavior.
Numerous types of radar have been used to detect, track, identify and
study bird behavior including high-resolution marine surveillance
radar near offshore wind farms (Gauthreaux and Belser, 2003;
Plonczkier and Sims, 2012). Target periodic amplitude modulation of a
radar echo has been used as an indicator of wing beat frequency and
thus used to identify birds (Bruderer et al., 2010). However, fluctuations
due to changes in scattering of the radar energy from the surface of the
bird as if flies through a radar beam alter the periodicity of the ampli-
tude modulation and complicate its use as a reliable signature of identi-
ty (Torvik et al., 2014). A fundamental piece of information provided by
radar is distance to target, which is not available with a single video
camera. Radar also provides much greater range than current thermal
infrared cameras, but is generally more expensive and requires more
power to operate making it difficult to employ at offshore locations
that lack infrastructure. Further, target detection with marine radars is
challenging due to noise and clutter (Jarrah et al., 2012), and radar
echoes off wind turbines could be problematic if operated within the
confines of an offshore wind farm.

We are researching the use of thermal infrared video to capture
the flight tracks of birds and bats. The use of thermal imaging to detect
wildlife may be limited by excessive humidity, distance from the cam-
era, field of view, physical obstruction, and even plumage and pelage
characteristics of the animals being studied (Cilulko et al, 2013). How-
ever, although optical cameras have a higher resolution than thermal
cameras, thermal video can record observations both day and night
and in weather conditions that make optical cameras less effective
and is relatively inexpensive to collect and easier to interpret compared
to radar. We assume that the shape of the flight path and statistics on
changes in direction, which are less affected by low resolution than
the image of the animal, will contribute to the classification of a target.
Normandeau (2014) recorded birds and bats with thermographic
cameras. Flight trajectories and animal shape were used to identify
objects as foraging bats, bat/bird, or unknown. Erratic flight trajectories
were identified as foraging bats, but it is unclear if or how timing and
degree of changes in flight direction were quantified or otherwise
evaluated. Although the flight path alone does not function as a species
or even group level signature, the automated extraction of data from
sensor-derived information could provide a method of significant cost
savings for related research. The use of flight path as an indicator of
identity, even at a coarse scale, will be a step towards eliciting finer
scale classification.

Our objectives are to show that it is possible to automate the identi-
fication of behavioral flight paths and to classify the associated birds
and bats. We present preliminary models for flight track and target clas-
sification based on a limited annotated library of tracks and associated
characteristics extracted froma single-camera thermal video. Ultimately,
our approach will be useful in estimating or validating the magnitude of
risk fromblade/tower collisions and evaluating avoidance behavior asso-
ciatedwith taxa of concern in areas under consideration for wind energy
development.
2. Methods

2.1. Data

A FieldPro 5× (Axsys Technologies) thermal video camera with a
thermal sensitivity of 0.04 °C, frame rate of 30 Hz, and resolution of
0.03 m/pixel for a target at a distance of 100 m was used to record
several hours of video using the sky as background. The camera was
mounted on a pan/tilt unit on a tripod, and video was recorded from
the shoreline of Sequim Bay and the Straights of Juan de Fuca, WA
during the summer months, 2012. The camera was oriented to look
just above the horizon for recording nearshore gulls and terns and
oriented approximately 45° above the horizontal to record bats and
swallows flying among tree tops. The thermal video was recorded
directly onto a laptop hard drive which allowed simultaneous viewing
of the recording. A field observer equippedwith image-stabilized binoc-
ulars mounted on a tripod and an audio recorder and laptop conducted
a visual survey of the expectedfield of view. Video clipsweremade from
the larger recording to represent a range of environmental conditions
and animal activity.

An annotated library was developed from the observer's field notes
and five thermal video clips, each 5 min long cut from the original
video. The field notes included the identity of the target, the time it
was observed, and the direction of flight in relation to the camera's
field of view (e.g., right to left, top to bottom). An additional observer
reviewed the thermal videowith thefield notes and verified the record-
ing of 160 tracks as identified by the field observer (N = 39 unknown
targets; 2 planes; 1 boat, cormorant, and insect; 4 terns; 8 bats; 31
swallows; and 73 gulls). While viewing the video, the reviewer placed
each track into one of five predetermined track shapes (n= 12 angled;
101 linear; 19 quadratic; 14 sine wave; and 14 turnaround) selected to
mimic actual flight paths (Fig. 1). For purposes of analysis, it was as-
sumed that target and track type as assigned by both the field observer
and the reviewer were 100% correct.

A track-detection algorithm (Matzner et al., in preparation) which
set a minimum of six target positions for detection was used on the
thermal video. The algorithm extracted the sequential (x, y) positions
in two-dimensional space from each of 104 detected tracks (including
8 tracks thatwere on the edges of the field of view that thefield observer
and reviewer missed). The algorithm output included a unique track
identification number; the time, location, and frame number the target
enters and exits the field of view; intensity; cluster dimensions of the
pixel blob associated with the target; a sequence of x, y positions in
each frame for the centroid (center of mass intensity) of the blob; and
a measure of the curviness or sinuosity of the detected track. Sinuosity
was defined in the algorithm as the interquartile range of the change in
direction between successive centroids. Specifically, the direction of the
path at time t (Dt) between the x–y locations from successive centroids
at time (t and t − 1) was defined as Dt ¼ tan−1 yt− yt−1

xt− xt−1
, and the change

in direction (Ct) between successive centroids was then calculated as
Ct=Dt− 1−Dt and used as the basis for discriminating between the dif-
ferent types of flight path.

A theoretical data set of 30 realizations of each track shape (N=150)
was created using randomly generated model parameters for each real-
ization in Microsoft Excel (2010). Gaussian (0, 1) noise was then added
to each x and y value of the track to maximize the jitter and variability
in the flight paths. Tracks were then smoothed using a moving window
average with a window size of six x-y values (consecutive time points).
Descriptive statisticswere then calculated on the smoothed change in di-
rection, for each realization, including the minimum, maximum, mean,
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Fig. 1. Theoretical flight track shapes in x–y space (A) and observer-identified flight paths
of similar shape (indicated with similar symbols) extracted from thermal video (B).
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standard deviation, coefficient of variation (CV), and quartiles (Q1, Q2,
and Q3) of the data distribution; the interquartile range (IQR = Q3 −
Q1); the difference between the mean and median (central skewness);
the range; the sample distribution skewness and kurtosis (a measure
of how flat or peaked the distribution of the change in direction is within
a track); and the number of times the sign changed between successive
x–y elements (ignoring zeros).
2.2. Classification of track shape

A model that discriminates between track shapes was developed
using a randomly selected subset (N=52) of the theoretical tracks' de-
scriptive statistics on the smoothed change in direction in Statistica
(2013). The remaining tracks were used for verification of the model.
Variables going into the forward-stepping discriminant model were
standardized and relatively uncorrelated (r b 0.85). The track similarity,
based on the Euclidean distance and the descriptive statistics of the
change in direction for each track shape, was calculated using Minitab
(2010), and because the angled, linear, and quadratic tracks were 73%
similar (Table 1), a two-step model was constructed. Model 1 was
used to discriminate between tracks classified as either sine wave
Table 1
Matrix of similarity between track types as assigned by the reviewer; ALQ=the combined
angled, linear, and quadratic tracks.

Track Type Angled Linear Quadratic ALQ Sine Wave Turnaround

Angled 80% 70% 74% – 44% 60%
Linear 70% 69% 70% 41% 54%
Quadratic 74% 70% 83% 45% 58%
ALQ – 73% 44% 57%
Sine Wave 44% 41% 45% 44% 46% 41%
Turnaround 60% 54% 58% 57% 41% 57%
(N = 12), turnaround (N = 12), or combined angled, linear, and qua-
dratic (ALQ) tracks (ALQ group;N=28). ThenModel 2was used to dis-
criminate between the angled (N = 8), linear (N = 12), and quadratic
tracks (N = 8). For Model 1, the maximum probability that a track
was likely a member of a given track type had to be greater than 0.7.
Otherwise, the track was considered outside of the modeled variability
and not classified. For Model 2, if the maximum probability that a
track was likely a member of a given track type was less than 0.7, the
track was classified as ALQ.

The final two-stepmodel was then tested on the remaining theoret-
ical tracks and the tracks that were extracted from the thermal video. A
minimum of 10 smoothed centroid locations were required to classify
the shape of the tracks extracted from the thermal video resulting in
N = 64 tracks.

The tracks extracted from video were very sinuous compared to the
modeled tracks, so the change in direction between successive centroid
locationswas censored (i.e., set to zero) for absolute values less than 0.3.
Classification was conducted with and without censoring.

2.3. Classification of target

A step-wise process to classifying target taxa from the thermal video
was developed based on (N=46; 4 bats, 2 terns, 22 gulls, and 18 swal-
lows) flight path discriminant scores from Model 1 and other statistics
output from the track-detection algorithm. The remaining 58 tracks
detected by the algorithm had either less than 10 smoothed centroids
and the track shape could not be classified or the taxon was unknown,
one of a kind (boat or cormorant), or missed by the observer.

First, we estimated the probability that the target was near the cam-
era based on a forward-stepping discriminant model and subjective
reviewer-assigned estimates of the flight paths being near or far, as
seen from the video (N = 46). The reviewer's assignment of near or
far was relative to other targets and aided by the constant width of a
line drawn by the algorithm over detected tracks (Fig. 2). If the wings
could be clearly seen outside of the line, then the target was considered
nearer to the camera than tracks that were covered by the line. This
model was tested on the 58 tracks that could not be used for target
classification. Variables used in the model were the standardized track
characteristics: third quartile of the blob width (BW); the median
number of pixels per blob divided by the number of frames per second
the targetwas in view (B:S); the number of frames per second the target
was in view (FPSV); the median BW divided by themedian blob height
(W:H); and the third quartile of the blob intensity (BI). The pair-wise
correlation for each variable in the model was r b 0.85.

Second, we developed a model that discriminates between the
observer-identified taxa using the second discriminant score from
Model 1, the estimated probability that the target was near, and other
statistics output from the track-detection algorithm. All variables were
standardized. The target classificationmodel was tested on five random
sampleswith replacement (N N 45) targets from themodeled data using
a jackknife cross-validation process.

3. Results

3.1. Classification of track shape

The classification of the modeled flight paths was much more suc-
cessful than the classification of the tracks extracted from the thermal
video (Fig. 1). Using themodeledflight paths, thefirst-step discriminant
model (Model 1) had a Wilks' lambda (a measure of the proportion
of variance that is unaccounted for in the combination of modeled
variables; smaller values indicate a better discrimination) of 0.06
(P b 0.0001) and retained six of the variables associated with changes
in direction (Table 2). The model was able to correctly classify 100% of
the ALQ tracks, 75% of the sine wave tracks, and 83% of the turnaround
tracks. Two Eigen values, both greater than 1, were able to explain 100%
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of the variability (Fig. 3). The kurtosis and the minimum change in
direction had the greatest discriminating power and coefficients for
the discriminant functions with the greatest magnitudes.

The second-step discriminantmodel (Model 2) had six variables and
a Wilks' lambda of 0.295 (P b 0.01). The mean change in direction was
the variable with the greatest discriminating power. The model was
able to correctly classify 100% of the quadratic tracks, 83% of the linear
tracks, and 63% of the angled tracks. Only one Eigen value was greater
than 1 (explaining 61% of the variability), but both Eigen values
explained a significant amount of information (Chi-square; P b 0.05)
and were used in the classification of the tracks extracted from thermal
video.

When the change in direction was not censored, 1 of 64 video-
extracted tracks (Track 1) was declared to be outside the modeled var-
iability (Fig. 4). The maximum membership probability for this track
was slightly less than 0.7 for the turnaround track type even though
the observer classified this flight path as linear and identified the target
as an airplane. In this case, the track-extraction algorithmhighlights the
camera's sensitivity to the changes in atmospheric conditions near and
far from the lens. For this track, six observed changes in direction had
a magnitude greater than 0.3; thus, even after censoring small changes
in direction, this track was still most likely classified as a turnaround
track (P = 0.71). This type of error can be corrected by setting track
types to linear when the magnitude of either the range in x-locations
or y-locations of the track is small relative to the size of the camera
frame in the corresponding axis.

For the remaining 63 tracks, the model- and observer-classified
tracks were in agreement in 26 cases (41%). When the angled, linear,
Table 2
Raw mean, standard deviation, and coefficients for the canonical variables for the first
discriminant model for sine wave, turnaround, and ALQ tracks.

Standardized descriptive statistic for
the change in direction

Mean Standard
deviation

Root 1 Root 2

Kurtosis 3.99 7.49 2.56 0.234
Minimum −0.86 0.76 2.037 −1.42
Skewness −0.22 1.48 −0.322 0.600
Median 0.00 0.03 −0.654 −0.121
Number of sign changes 4.56 4.82 0.501 0.162
Central skew 0.00 0.03 −0.096 0.367
Eigen value 4.20 2.12
Cumulative percent of variability explained 66% 100%
and quadratic track categories were combined (ALQ), the number of
tracks in agreement increased to 59%. If only two major categories
(ALQ and the combined sine wave and turnaround [ST] tracks) were
considered, the number of tracks in agreement increased to 62%. Some
of the disagreement in classification was associated with the number
and magnitude of changes in direction (jitter) based on the bird move-
ment and the track-extraction algorithm's definition of the centroid.
The centroid tracked the movement of the wings and increased the
number of changes in direction especially affecting linear flight paths.
When changes in direction were not censored, only 12 (44%) of the 27
observer-identified linear flight paths were classified as linear. When
the change in direction was censored, 24 (88%) of the 27 linear flight
paths were classified as linear (Table 3).

When small changes in direction were censored (absolute values
less than 0.3 set to 0), two different tracks out of the 64 were declared
to be outside the modeled variability. Both tracks had a maximum
membership probability of slightly less than 0.7 for the turnaround
track type. Without the censoring, these tracks (both tight “U-shaped”)
were classified as turnaround tracks with probabilities of membership
greater than 80%. In this case, the observer identified both tracks as
quadratic flight paths. For the remaining 62 tracks, the model- and
observer-classified tracks were in agreement in 35 cases (56%). Using
only three categories, the number of tracks in agreement increases to
71%, and with two categories the number of tracks in agreement in-
creases to 73%. With and without censoring small changes in direction,
none of the video-extracted tracks were classified as “angled” using the
discriminant model. Instead they were classified as linear, quadratic, or
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Fig. 3. Plot of the two discriminant scores (N=52 tracks) for the first discriminant model
(Table 2) based on modeled flight shapes presented in Table 1.
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turnaround—all associated with the magnitude and the number of
changes in direction. Some of the disagreements in classification were
associated with the resolution of the track (Fig. 3). Another source of
disagreement was the difference between the observer's perceptions
of what a track type should look like plus the potential for overlapwith-
in flight path types compared to themodeled track types. The extracted
tracks (22, 39, 66, 10, and 32) in Fig. 1 (bottom) were classified by the
discriminantmodel without andwith censoring small changes in direc-
tion as linear, quadratic, linear, quadratic, and turnaround, respectively.
For this exercise, the observer was not provided with specific rules for
identification of track types and this could be the cause of many of the
disagreements.

3.2. Probability of being near

The probability of the target being near the camerawas estimated to
reduce errors in classification of the target associated with the resolu-
tion of the track. We noticed that targets near the camera tended to
travel farther per frame as a function of their size-to-speed ratio than
targets clearly far from the camera (Fig. 5). However, for some targets
the distance was not distinctively clear and there was overlap in the
relationship between distance traveled and the size-to-speed ratio.
Thus, for purposes of discrimination, a third distance category—“within
bounds of potential error”—was assigned to observations with B:S
values that fell within the absolute maximum boundary of overlap
observed in Fig. 4; defined for modeling as log10(B:S) = 0 ± 0.25. The
probability of being near the camera, Prob(near), was then defined by
the following function with multipliers shown in the discriminant
score (SN; Table 4):

Prob nearð Þ ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNþ3:24ð Þ2

�q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNþ3:24ð Þ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN−1:22ð Þ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN−1:86ð Þ2

p� �
Table 3
Confusion matrix for the classification of flight path types for tracks with at least 10 smoothed

Classification method and classified path type Observed

Angled

Classification without censoring Linear 1
Quadratic 2
Sine 0
Turnaround 3
NA 0

Classification with censored directional changes b0.3 Linear 3
Quadratic 0
Sine 0
Turnaround 3
NA 0

Observed type total 6
where SN =−2.24 BW+ 0.66 B:S + 0.38 FPSV− 0.41 W:H− 0.27 BI.
This discriminant model had a Wilks' lambda of 0.15 (P b 0.0001) and
agreed with 86% (12 out of 14) of targets subjectively assigned as
being “near” by the observer.

The near/far discriminant model was then used on 58 detected tar-
gets with short tracks or unknown targets not used for model building.
The calculated probability of being near produced a bimodal distribu-
tion well separated at 0.6. Thus, the proximity to the camera was
assigned as being “near” if the probability of being near was at least
0.6; otherwise it was assigned as being “far.” The model-predicted
assignments of distance were in agreement with 85% of the observer-
assigned distances. However, because the assignment of near and far
is subjective (just like the earlier classification of track types), a plot of
the distance traveled per frame relative to the size-to-speed ratio
observed in the modeled data (Fig. 5) was constructed with the test
data (Fig. 6). In general, the relationship between variables was main-
tained in the test data. A notable exception is the unknown target that
has a value of 15 for the distance traveled per frame and was estimated
to be far from but observed to be near the camera and outside of the
bounds of potential error. Only a subset of this flight path was detected
(N = 11 elements), and the body blob characteristics may be poorly
estimated.

3.3. Classification of target

For the classification of targets a discriminant model was developed
for the three track types (ALQ, sine wave, and turnaround tracks) using
the observer-identified taxa. The variables in themodel output from the
track-extraction algorithmwere the third quartile of the BI and distance
traveled. The remaining variables in the model were calculated from
information output from the algorithm, the second discriminant score
from Model 1 of the track classification, or the probability of being
centroid x–y locations with and without censoring the change in direction.

path type Classified type total

Linear Quadratic Sine Turnaround

12 2 4 0 19
6 4 1 0 13
2 0 0 1 3
7 7 1 10 28
1 0 0 0 1

24 6 6 0 39
0 1 0 0 1
2 1 0 1 4
2 3 0 10 18
0 2 0 0 2

28 13 6 11 64
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near the camera. The blob height CV was defined as the median blob
height divided by the blob height standard deviation. The speed CV
was defined as themean speed (pixels/s) divided by the speed standard
deviation. The proportional change in blob height was defined as the
range in blob height divided by themaximumblob height. The resulting
model had aWilks' lambda of 0.15 (N=46; P b 0.0001) and 87% correct
classification (Table 5 and Fig. 7). Both Eigen values explained a signifi-
cant amount of information (Chi-square; P b 0.01).

3.4. Error analysis of target classification

Errors in the classification of tracks unrelated to the detection errors
from the extraction algorithm include misidentification of tracks, ob-
served flight paths outside of the variability characterized by the five
modeled track types, and associating types of tracks to either birds or
bats based on behavior. The latter error is associated with the amount
of data (tracks both detected and classified) from known birds and
bats (correctly identified by humans, recorded in an annotated library
of observed flight paths) and whether observations are representative
of each target species' flight behavior.

Human errors include misidentification in observation and record-
ing in an annotated library, observing flight paths outside the field of
view or too far away from the camera, missing flight paths recorded
by the camera, and the misidentification of track type and nearness to
the camera. The latter two errors are based on subjective decisions
and are difficult to assign as an error. It is difficult to bound the camera's
field of view in the open sky and explicitly define the video resolution
into human terms. Because of this difficulty, the field observer may
detect targets just outside the field of view of the camera. When more
targets are observed than captured on the video, it is difficult to assign
the correct field observation to that recorded on video.

Finally, errors are made when classifying the target from classified
tracks. Five bootstrap samples of the 46 tracks used to build the target
Table 4
Rawmean, standard deviation, and coefficients for the canonical variables for the discrim-
inant model for targets near, within error, or far.

Standardized descriptive statistics for the track
elements

Mean Standard
deviation

Root 1

Blob width Q3 14 12.7 −2.25
Median number of pixels:frames/s 5 11.1 0.66
Frames/s 27 6.5 0.38
Median blob width:median blob height 2 0.9 −0.41
Blob intensity Q3 1 0.1 −0.27
Eigen value 4.98
Cumulative percent of variability explained 98%
discriminant model were created to assess four types of uncertainty in
the model-building process: correlation structure and values used
for standardization of data, coefficients for the discriminantmodel, jack-
knife cross-validation of target classification errors, and characteristics
of tracks that were misclassified. The five samples were created
by merging a random sample of 60% of the classified tracks with
replacement and a stratified random sample of 50% of bats, swallows,
and gulls, and 100% of terns. This sampling strategy guaranteed
that there were at least two tern and two bat flight tracks in each
cross-validation sample.

The mean and standard deviation of most of the parameters for the
five samples were not significantly different from the values used to
standardize themodel data (t-test;minimum P=0.13 and P=0.09, re-
spectively). The mean standard deviation for distance traveled was
nearly significantly different between test samples (t-test; P = 0.06),
and the mean standard deviation for distance traveled per frame was
significantly different (P = 0.02). The largest correlation was between
the probability of being near and the ratio of the BW third quartile
and the proportional change in blob height extremes (r = 0.91, N = 5
samples). The second largest correlation was between the standard
deviation of BW and the B:S ratio (r = 0.86).

The magnitude of the standardized coefficients for the discriminant
model (Table 5) was calculated for the model data and each sample,
then ranked and compared using Kendall's test of concordance. The
standardized coefficients with the greatest rank have the greatest
weight in the calculation of the discriminant score. The test of concor-
dance tests the null hypothesis that the ranks of the coefficients
between the six data sets were not associated. The rankings of the coef-
ficients for the first score were not detected to be significantly different
(P = 0.15), but the rankings for the second score were significantly
Rawmean, standard deviation, and coefficients for the canonical variables for the discrim-
inant model for tracks classified as angled, linear, or quadratic tracks and observed taxa.

Standardized descriptive statistics for
the track elements

Mean Standard
deviation

Root 1 Root 2

Blob intensity Q3 1 0.1 −1.69 −0.49
Distance traveled 338 181 −0.56 0.31
Model 1 track discriminant score 2 −0.30 2.34 0.42 −0.19
Blob height CV 0.31 0.14 0.09 0.41
Speed CV 0.56 0.26 0.03 0.90
Probability (near) 0.45 0.26 0.23 1.57
Proportional change in blob height 0.75 0.13 −0.36 −1.05
Median blob width:median blob height 2 0.9 −0.26 −0.79
Eigen value 1.93 0.88
Cumulative percent of variability explained 64% 94%
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Fig. 7. Plot of the two discriminant scores for all classified tracks (N=46) using themodel
coefficients and parameters presented in Table 5.
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different (P = 0.01). The proportion of the variance explained by the
first root ranged in the samples from 50% to 74% and had a mean
of 60% compared to 64% for the modeled data. The proportion of the
variance explained by the second root ranged in the samples from 17%
to 40% and had a mean of 31% compared to 29% for the modeled data.
The coefficients for the variables in the model were affected by the
sample.

The jackknife cross-validation of target classification entailed
recalculating the discriminant function repeatedly by omitting one
observation at a time and then classifying the omitted observation. In
general, groups were classified less successfully in the cross-validation
(the minimum correct classifications for gulls and swallows were 58%
and 75%, respectively) than when all data were used (Table 6). Bats
and terns on average had 94% and 91% correct classifications using
cross-validation, but there were only four bat and two tern tracks in
the model data. Thus, the variance associated with the tracks from
these targets is poorly estimated. Gulls and swallows, on the other
hand, may be fairly well represented with a sample size of at least 18
even though on average the model-derived classifications for these
specieswere 73% and 85% correct, respectively. Independently collected
validation data would provide a better estimate of the accuracy of the
models.

Ten trackswere consistentlymisclassifiedduring the cross-validation.
Four of them were classified with likelihoods less than 60% of belonging
to the wrong group. These tracks would have been considered too far
away from any class centroid to have been classified. Three of the tracks
Table 6
Cross-validation of target classification using the model data and five bootstrap samples
and the model defined by Table 5.

Data Analysis Correct (%) Bat Gull Swallow Tern

Modeled N 46 4 22 18 2
Full 87% 100% 82% 89% 100%
Cross-validated 78% 100% 68% 83% 100%

Sample 1 N 48 3 26 17 2
Full 83% 100% 73% 94% 100%
Cross-validated 75% 100% 69% 77% 100%

Sample 2 N 47 3 21 18 5
Full 100% 100% 100% 100% 100%
Cross-validated 92% 67% 91% 100% 80%

Sample 3 N 54 5 25 20 4
Full 85% 100% 80% 85% 100%
Cross-validated 78% 100% 72% 75% 100%

Sample 4 N 51 5 22 21 3
Full 90% 100% 82% 95% 100%
Cross-validated 86% 100% 77% 95% 67%

Sample 5 N 46 5 12 23 6
Full 85% 100% 75% 83% 100%
Cross-validated 80% 100% 58% 83% 100%

Average Full 88% 100% 82% 91% 100%
Cross-validated 82% 94% 73% 85% 91%
were classified with likelihoods greater than 90% of belonging to the
wrong group. These tracks had characteristics that were indistinguish-
able from the misclassified group, suggesting that more track and blob
characteristics would be beneficial for target discrimination. The re-
maining three tracks had likelihoods between 70% and 76% of belonging
to the wrong group. These tracks had small differences in the Euclidean
distance to the correct and the misclassified group centroids.

4. Discussion

Automated identification of birds and bats in recorded video has the
potential to provide useful information for assessing the risks posed by
wind energy development. Classification of flying fauna to a species or
small group of similar species from sensor-derived data likely requires
the examination of many characteristics exhibited during the observa-
tion. Body shape, flock formation and behavior, wing beat frequency
and rhythm, speed, and flight path often provide clues to the identity
of a bird or bat and to its behavior at the time of detection (Bruderer
et al., 2010; Desholm et al., 2006; Liechti and Bruderer, 2002;
Pennycuick, 1996, 2001; Zaugg et al., 2008). Wing beat frequency was
used by Li and Song (2014) to identify 32 bird species in video clips.
These authors found that the ability to classify birds was dependent
on the uniqueness of their wing beat frequencies compared to other
candidate species in the set. Their lack of precision was more a result
of the magnitude of overlapping wingbeat frequencies among species
than their ability to estimate the frequency from the video. The addition
of other attributes such as flight path shape may increase success of
species identification. For instance, Gillson (2001) described behavioral
differences between the closely related sooty shearwater (Puffinus
griseus) and short-tailed shearwater (Puffinus tenuirostris). Sooty shear-
waters flight is relatively smooth, repetitious, and undulating while
short-tailed shearwater flight is laborious, erratic and includes more di-
rectional changes. Descriptive information describing flight behavior
such as this is often used by birders to differentiate among species and
could be used for automated classification if it was quantified.

For site-scale risk assessment, algorithms to automate animal
detection and classification have not been widely published and are
considered intellectual property. Groom et al. (2013) detected 93% of
the birds (that were also detected manually by observers) by using an
automated extraction algorithm of selected data features (potential
birds) from aerial digital images of two existing wind farms off the
coast of England.However,muchof thedatawas removed fromanalysis
because of glare andwave action. It is not clear fromGroomet al. (2013)
what the percentage of correct detection would be in the area removed
from analysis but the authors state that the rate of false positives in-
creased in areas affected by glare. A baselinemonitoring study of raptor
migration routes in relation to a planned offshorewind farm (Skov et al.,
2012) used radar and algorithms to automate track detections in real
time with one observer entering data into a database and another
observer attempting to find and identify the object in the field with
binoculars or a telescope. Only those tracks that the second observer
was able to identifywere used in their analysis. Therewere no estimates
of the false positive or negative rates of the track-detection algorithm.
Current programs funded by the Federal Aviation Administration and
theNationalWildlife ResearchCenter are assessing the accuracy andde-
tection error rates of radar with changing atmospheric conditions, bird
range, altitude, and size, for which there is little published information
(FAA, 2010; Herricks et al., 2012; King, 2013; USDA, 2014).

The path a flying animal travels as it passes a thermal sensor was
used in our study to help classify the target but could also provide infor-
mation about its activity. For instance, foraging for insects during flight
requires a wing that provides maximum maneuverability. Most North
American bats are insect feeders that hunt flying insects during flight.
The lack of feathers and proportionately less flight muscle per unit
weight than comparably sized birds results in bats generating less
power per wing flap than birds (Norberg and Norberg, 2012). Smaller
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bats also have proportionally lower wing loading because of their light
weight and large wings, which enables the slow flight and high maneu-
verability necessary for effective foraging via short-range echolocation of
prey. The path of a bat foraging for airborne insectswould be expected to
be highly tortuous and exhibit a complex zig-zag pattern. Conversely, the
path of birds soaring on thermal air currents would enable one to
exclude any number of species that would not be expected to exhibit
such behavior.

Animals that pass very near a sensor would likely appear as a linear
track regardless of the species or the behavior the animal may be en-
gaged in when observed. All of our targets exhibited a linear flight
path at least 10% of the time. The amount of time an animal exhibits
straight flight daily or even seasonally is unknown because activity
budgets containing detailed flight information simply are not available
and would be prohibitively expensive to derive. In our video, gulls and
terns were observed more often flying in a linear path than bats and
swallows.

A single camera does not provide range information, andwithout an
estimate of distance, a linear track has littlemeaning. Additional sensors
such as radar have been coupled with camera technologies to provide
target range (Gauthreaux and Livingston, 2006), and have also enriched
themeaning of track shape. Much of themodeling presented in Section
3 would be altered if we had a measure of distance since this would
allow an estimate of body size. Amodel including body sizewould likely
not have misclassified gulls as swallows and visa-versa (Fig. 7).

Opportunities to further develop the application of thermal video in-
clude the extraction of additional information to increase classification
accuracy, such as wing beat frequency. Track shape can be assessed as
an indicator of a blade collision or avoidance behavior. Establishing a
list of candidate species expected to occur at a particular location and
time (of day or year) could allow for prior probabilities of identity to
be incorporated into the classification process. Clearlymore information
would increase the success rate of classification to a group or species
level or at aminimumdetermine that the detected target is not a species
of concern.
5. Conclusion

Using an annotated library of flight paths by bats, swallows, gulls,
and terns, we have shown that it is possible (with 82% accuracy overall)
to classify the targets based on tracks detected with video from a single
thermal camera. The models we have developed for track shape and
species classification could be added to the track-detection algorithm
for automation purposes. However, these models should be considered
preliminary even though they do provide evidence of species classifica-
tion from thermal video. Future research to increase the robustness of
these models includes the extraction of additional measurements from
the imagery and the expansion and diversification of the annotated
library. A larger annotated library would allow for the splitting of data
for model development and independent model validation instead of
the jackknife cross-validation estimates of the classification errors.

Variables including ambient weather conditions and time of day
relative to sunrise and sunset should be recorded with sensor data to
complement information contained within the flight track shape. The
direction and strength of ambient winds present when animal flight is
observed would also affect flight speed and behavior and likely affect
track shape; thus wind characteristics should be evaluated for their
effect on correct classification.

Limitations imposed by the use of a single cameramust be considered
by others who may want to attempt a similar classification of birds and
bats using thermal video. Without a measure of range, estimates of
wing beat frequency and prior probabilities of target occurrence will
likely have a greater influence on determining target identity than flight
track shape. However, once the target is identified track shape can be
used to estimate behavior and collision risk.
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